Chemical Library Subset Selection Algorithms: A Unified Derivation Using Spatial Statistics

نویسندگان

  • Fred A. Hamprecht
  • Walter Thiel
  • Wilfred F. van Gunsteren
چکیده

If similar compounds have similar activity, rational subset selection becomes superior to random selection in screening for pharmacological lead discovery programs. Traditional approaches to this experimental design problem fall into two classes: (i) a linear or quadratic response function is assumed (ii) some space filling criterion is optimized. The assumptions underlying the first approach are clear but not always defendable; the second approach yields more intuitive designs but lacks a clear theoretical foundation. We model activity in a bioassay as realization of a stochastic process and use the best linear unbiased estimator to construct spatial sampling designs that optimize the integrated mean square prediction error, the maximum mean square prediction error, or the entropy. We argue that our approach constitutes a unifying framework encompassing most proposed techniques as limiting cases and sheds light on their underlying assumptions. In particular, vector quantization is obtained, in dimensions up to eight, in the limiting case of very smooth response surfaces for the integrated mean square error criterion. Closest packing is obtained for very rough surfaces under the integrated mean square error and entropy criteria. We suggest to use either the integrated mean square prediction error or the entropy as optimization criteria rather than approximations thereof and propose a scheme for direct iterative minimization of the integrated mean square prediction error. Finally, we discuss how the quality of chemical descriptors manifests itself and clarify the assumptions underlying the selection of diverse or representative subsets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

Dissimilarity-Based Algorithms for Selecting Structurally Diverse Sets of Compounds

This paper commences with a brief introduction to modern techniques for the computational analysis of molecular diversity and the design of combinatorial libraries. It then reviews dissimilarity-based algorithms for the selection of structurally diverse sets of compounds in chemical databases. Procedures are described for selecting a diverse subset of an entire database, and for selecting diver...

متن کامل

Improvement of effort estimation accuracy in software projects using a feature selection approach

In recent years, utilization of feature selection techniques has become an essential requirement for processing and model construction in different scientific areas. In the field of software project effort estimation, the need to apply dimensionality reduction and feature selection methods has become an inevitable demand. The high volumes of data, costs, and time necessary for gathering data , ...

متن کامل

A New Hybrid Feature Subset Selection Algorithm for the Analysis of Ovarian Cancer Data Using Laser Mass Spectrum

Introduction: Amajor problem in the treatment of cancer is the lack of an appropriate method for the early diagnosis of the disease. The chemical reaction within an organ may be reflected in the form of proteomic patterns in the serum, sputum, or urine. Laser mass spectrometry is a valuable tool for extracting the proteomic patterns from biological samples. A major challenge in extracting such ...

متن کامل

Feature Selection in Structural Health Monitoring Big Data Using a Meta-Heuristic Optimization Algorithm

This paper focuses on the processing of structural health monitoring (SHM) big data. Extracted features of a  structure are reduced using an optimization algorithm to find a minimal subset of salient features by removing noisy, irrelevant and redundant data. The PSO-Harmony algorithm is introduced for feature selection to enhance the capability of the proposed method for processing the  measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and computer sciences

دوره 42 2  شماره 

صفحات  -

تاریخ انتشار 2002